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Abstract

Thermal postbuckling analysis is presented for a functionally graded cylindrical thin shell of finite length. The
temperature field considered is assumed to be a uniform distribution over the shell surface and through the shell
thickness. Material properties are assumed to be temperature-dependent, and graded in the thickness direction
according to a simple power law distribution in terms of the volume fractions of the constituents. The governing
equations are based on the classical shell theory with a von Kdrman—Donnell-type of kinematic nonlinearity. The
nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A
boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large
deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of
functionally graded cylindrical shells of finite length. A singular perturbation technique is employed to determine
buckling temperature and postbuckling load—deflection curves. The numerical illustrations concern the thermal post-
buckling response of perfect and imperfect, cylindrical thin shells with two constituent materials. The effects played by
volume fraction distribution, and initial geometric imperfections are studied.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Designs of airframes for high speed flight and spacecraft structures have to consider carefully the effect
of the thermal environment on structural and material behavior. For this reason, many thermal post-
buckling studies of composite laminated shell structures are available in the literature, see for example,
Birman and Bert (1993), and Shen (1997, 2002a). In these studies the material properties are considered to
be independent of temperature. Functionally graded materials (FGMs) are microscopically inhomogeneous
composites usually made from a mixture of metals and ceramics. By gradually varying the volume fraction
of the constituent materials, their material properties exhibit a smooth and continuous change from one
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surface to another, thus eliminating interface problems and mitigating thermal stress concentrations.
FGMs are now developed for general use as structural components in extremely high temperature envi-
ronments, and they have the advantage of being able to withstand high temperature environments while
maintaining their structural integrity. Loy et al. (1999) presented a free vibration analysis of simply sup-
ported FGM cylindrical thin shells. This work was then extended to the case of FGM cylindrical thin shells
under various boundary conditions by Pradhan et al. (2000). Gong et al. (1999) gave an elastic response
analysis of simply supported FGM cylindrical shells under low-velocity impact. By using the finite element
method and Fourier transformation technique, Han et al. (2001) solved the wave motion in an FGM
cylinder. Ng et al. (2001) studied the parametric resonance or dynamic stability of FGM cylindrical thin
shells under periodic axial loading. In the forgoing studies, Reddy and his co-workers developed a simple
theory, in which the material properties are graded in the thickness direction according to a volume fraction
power law distribution, but their numerical results were only for a simple case of an FGM shell in a
constant thermal environment. Recently, Shen (2002b, 2003) gave a postbuckling analysis of FGM
cylindrical thin shells subjected to axial compression or external pressure. In the above studies, the material
properties were considered to be temperature-dependent and the effect of temperature rise on the post-
buckling behavior was reported. Also recently, Shahsiah and Eslami (2003) studied the thermal buckling of
FGM cylindrical shells under two types of thermal loads based on the first order shear deformation shell
theory. In their analysis the material properties were considered to be independent of temperature. How-
ever, studies on thermal postbuckling of FGM cylindrical shells with temperature-dependent thermoelastic
properties have not been seen in the literature. This problem is studied in the present paper, for the case
when two end edges of the shell are assumed to be simply supported or clamped with no in-plane dis-
placement.

Under the present study, the material properties are assumed to be nonlinear functions of temperature,
and graded in the thickness direction according to a volume fraction power law distribution. It is because
the thermal buckling only occurs for thin cylindrical shells. The governing equations are based on the
classical shell theory with a von Kdarman-Donnell-type of kinematic nonlinearity. The boundary layer
theory suggested by Shen and Chen (1988, 1990) is extended to the case of FGM cylindrical shells with two
constituent materials subjected to a uniform temperature rise. A singular perturbation technique is em-
ployed to determine the buckling temperature and thermal postbuckling load—deflection curves. The
nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into
account but, for simplicity, the form of initial geometric imperfection is assumed to be the same as the
initial buckling mode of the shell.

2. Theoretical development

Consider an FGM circular cylindrical shell with mean radius R, length L and thickness ¢, which is made
from a mixture of ceramic and metallic materials. The shell is referred to a coordinate system (X,Y,Z) in
which X and Y are in the axial and circumferential directions of the shell and Z is in the direction of the
inward normal to the middle surface. The corresponding displacements are designated by U, V and W. The
origin of the coordinate system is located at the end of the shell in the middle plane. The shell is assumed to
be relatively thin and geometrically imperfect, and is subjected to a uniform temperature rise A7. Denoting
the initial geometric imperfection by W (X, Y), let W (X, Y) be the additional deflection and F (X, Y) be the
stress function for the stress resultants defined by N, = F,,,, N, = F,, and N,, = —F ,,, where a comma
denotes partial differentiation with respect to the corresponding coordinates.

Assume that the material composition varies smoothly from the outer to the inner surface of the shell. In
such a way, the effective material properties P, like Young’s modulus E or thermal expansion coefficient o,
can be expressed as
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P =PV, + PN M)
where P, and P, denote the temperature-dependent properties of the outer and inner surfaces of the shell,

respectively, and ¥, and ¥} are the volume fractions of the constituent materials corresponding to P, and P,
and are related by

Vo+Vi=1 (2)

The volume fraction ¥; follows a simple power law

- (222;rt>N )

where volume fraction index N dictates the material variation profile through the shell thickness and may
be varied to obtain the optimum distribution of component materials. It is evident that when N =0, V; =1
and ¥, = 0, the shell is an isotropic one made up of material as that at the inner surface.

From Egs. (1)—(3), the effective Young’s modulus £ and thermal expansion coefficient o of an FGM
cylindrical shell can be written as (see Gibson et al., 1995)

E(Z,T) = [E(T) — Eo(T)] (225 t) +Ey(T)

2(Z, T) = [(T) — 20(T)] <2Z; ’) + 5o(T)

It is evident that when Z = —t/2, E = E, and o = «,, and when Z =¢/2, E = E; and o = o. Since func-
tionally graded structures are most commonly used in high temperature environment where significant
changes in mechanical properties of the constituent materials are to be expected (see Reddy and Chin,
1998), it is essential to take into consideration this temperature-dependency for accurate prediction of the
mechanical response. Thus, E,, E;, o, and o; are functions of temperature, as to be shown in Section 4, so
that £ and o are both temperature and position dependent.

Based on classical shell theory (i.e. transverse shear deformation effects are neglected) with von Kdrman—
Donnell-type kinematic relations and including thermal effects, the governing differential equations for an
FGM cylindrical shell have been derived and can be expressed in terms of a stress function F, the transverse
displacement W, and the initial geometric imperfection W' . They are

1

Lo(W) +Lin(F) = Lis(N') = Lu(M") — 2Fu =L+ F) (5)
Eni(F) — L) — Ens(N) + 2 ¥ o = — S L + 27, 7) (6)

where the linear operators L;;( ) and the nonlinear operator L( ) are defined as
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It is noted that these shell equations include thermal coupling as well as the interaction of stretching and
bending. Egs. (5)—(7) are identical in form to those of unsymmetric cross-ply laminated cylindrical shells
under thermomechanical loading (see Shen, 1997), but now all the reduced stiffness matrices [4;], [B;] and
[D;] (i,j = 1,2,6) are functions of temperature and position, defined by

A'=A", B=-A"'B, D=D-BA'B (8)

where A4;;, B;; and D;; are defined by
t/2
(Alj7Blj7D ) //2(QU)(1,Z,ZZ)dZ (17]: 17276) (9)
—t
and
E(Z,T) E(Z 7) E(Z,T)
= = = = = 1
Qu=0O0n=7F—173 Ou=—"F—15" =0 0, Qe = 20+ (10)
in which E is given in detail in Eq. (4), and varies through the shell thickness.
The forces and moments caused by elevated temperature are defined by
_Nx: Mx; t/2 Ax(Z7 T)
N | = / A(Z.T) | AT, 2)dz (11)
[N, M., T2 A4y(2,T)
where AT is temperature rise from some reference temperature at which there are no thermal strains, and
[ A.(Z,T) On On Q|1 0
Z,T
AZT) | ==|0n 0n 0|0 1 [ZEZ Tﬂ (12)
| 44(Z,T) O Ow Qs | |0 O ’

where the thermal expansion coefficient « is also given in detail in Eq. (4).

The two end edges of the shell are assumed to be simply supported or clamped, and to be restrained
against expansion longitudinally while temperature is increased steadily, so that the boundary conditions
are

X=0,L:
w =0 (13a)

=

=0 (13b)
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— LK K oW OW .
M, =—-B — e — B} = e - D}, = e - D}y = 72 +M. =0 (simply supported) (13¢)
W=W,=0 (clamped) (13d)

where M, is the bending moment. Also, we have the closed (or periodicity) condition

2nR aV
—_dy = 14
/0 ar=o (14a)
or
/M JOFLOF (LW T WL (W oW oW
0 2ox2 " Tayr \TMax? T T2y R 2\ 0y oY oy
s =T « =T
— (47,N, +A22Ny)]dY =0 (14b)

Because of Eq. (14), the in-plane boundary condition ¥ = 0 (at X = 0, L) is not needed in Eq. (13).
The average end-shortening relationship is defined as

2nR
L — Y
3 2nRL / A dXd

2R F o°F W oW

- 2nRL Az tege — \Bige By
1 /oW oW ow"
X X ox

— (AN + 4N )]dXdY (15)

3. Analytical method and asymptotic solutions

Having developed the theory, we are now in a position to solve Egs. (5) and (6) with boundary condition
(13). Before proceeding, it is convenient first to define the following dimensionless quantities

x=nX/L, y=Y/R, B=L/nR, Z=I*/Rt, &= (n’R/L*)[D! DA} AL]"

(W, W) = o(W, W)/ 1D} DA A3]", F = &F/[D}, D3]

712 = (D, +2D46) /D7y, 7 = (A7, + Age/2) /A5,

Y4 = [D;2/DT1]1/2» V2 = [ATl/A;ﬂl/za Vs = —Aj,/4A3

(V300 V325 V345 V3115 V322) = (B3, Byy + By — ZstaBTmBTl7322)/[D71D;2A9161A§2]1/4 (16)
(V71 772) = (AfvA_VT)R[ATlAzz/DTlDzz]l/“

(Mo M]) = & (M, M, ) (1) /D3 D} D A3y]

5= (

~|

R )
) T g A= %AT
2[D1]D22A|1A22]
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where o is an arbitrary reference value, and
oy = apndy, O = Axndp (17)

in Eq. (16) 4] = A] are defined by

i1l
X — _ X dZ 18
[A§ —t/2 Ay ( )
and the details of which can be found in Appendix A.

The nonlinear Egs. (5) and (6) may then be written in dimensionless form as

EL(W) + e914Lia(F) — 91aF e = 71a°LIW + W* F) (19)
Lo (F) — &ypaln(W) + 92y Wox = _%’/24[32L(W +2W W) (20)
where
4 a ! 4
Lu( )= o Wi 2,5 20 + 7B ot

B s , o , o
Lip( ) =Ln( )= V3oa_x4+ V3P W"‘ 734B ot
64
ot
? * o ?
()=3252" 2528 ooy 32 a2
ox? Oy Oxdy Ox0y  0y? Ox
For most of the FGMs [D, D3, 4}, 43,]'* = 0.3t. Moreover, when Z = (L?/Rt) > 2.96, then from Eq. (16)
¢ < 1. In particular, for homogeneous isotropic cylindrical shells, ¢ = 7 /ZB\/_Z where Z = (L?/Rt) x
[1 —1?)" is the Batdorf shell parameter, which should be greater than 2.85 in the case of classical linear
buckling analysis (Batdorf, 1947). In practice, the shell structure will have Z > 10, so that we always have
e < 1. When ¢ < 1, Egs. (19) and (20) are of the boundary layer type, then nonlinear prebuckling defor-
mations, large deflections in the postbuckling range, and initial geometric imperfections of the shell can be

considered simultaneously.
The boundary conditions of Eq. (13) become

64
Ly( ) =25+ 2mF %) + 73 6y4

x=0, m
w=0 (22a)
5. =0 (22b)
M, =0 (simply supported) (22¢)
W,.=0 (clamped) (22d)

and the closed condition of Eq. (14b) becomes

O*F O°F oW oW 1 ow
/0 <6x2 ﬁz 0 2> 8V24</30 o) Jr%zzﬁz > + yulW — 2/24,8 < oy )

oW oW
- mﬁz o + e(yra — mn)ir] dy=0 (23)
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The unit end-shortening relationship becomes

n 62 oW awN 1 [ow\?
_ *1 2 v}
0= 4” V24 / / l( 24ﬁ /5 ox2 ) &4 (V311 ox? * /34ﬁ ) _§y24(§>

ow ow*
~ 743 Tar +e(y2avr1 — Vs?rz)lrldxdy -

By virtue of the fact that AT is assumed to be uniform, the thermal coupling in Egs. (5) and (6) vanishes,
but the terms in AT affect Egs. (23) and (24).

From Egs. (19)-(24), one can determine the thermal postbuckling behavior of perfect and imperfect
FGM cylindrical shells subjected to a uniform temperature rise by means of a singular perturbation
technique. The essence of this procedure, in the present case, is to assume that

W =w(x,y, &)+ W(x, &y e)+ W(x(y,e)

F=f(x,y,e) +Fx,&p0) + Fx,{ye)
where ¢ is a small perturbation parameter (provided Z>2. 96) as defined in Eq. (16) and w(x,y,¢), f(x, . ¢)
are called outer or regular solutions of the shell, W (x, &, y, &), F(x, &, y, ) and W (x,{,y,¢), F(x,(,y, &) are the

boundary layer solutions near the x = 0 and x = = edges, respectively, and ¢ and { are the boundary layer
variables, defined as

E=x/vE (=(n—x)/Ve (26)

This means for homogeneous isotropic cylindrical shells the width of the boundary layers is of order v/Rt.
In Eq. (25) the regular and boundary layer solutions are taken in the forms of perturbation expansions as

(25)

w(x,y, & }:ewxy S(x,,8) E:dﬁxy (27a)
x,&,y,€) }j#“mﬂ &), F(x,&p8) =Y &7 Fn(xEy) (27b)
j=0
W(x,(,8) §:y+ Wi (x,0y),  Flx,Cye) }jd* Fria(x, ) (27¢)

The initial buckling mode is assumed to have the form

wy(x,y) = A(lzl) sin mx sin ny (28)
and the initial geometric imperfection is assumed to have the similar form

W*(x,y,€) = &a}, sinmxsinny = & oc A\Y sin mx sin ny (29)

where «= aj, /A(lzl) is the imperfection parameter.
Substituting Egs. (25)-(27) into Eqgs. (19) and (20) and collecting terms of the same order of &, one
obtains three sets of perturbation equations for the regular and boundary layer solutions respectively.
Using Eqgs. (28) and (29) to solve these perturbation equations of each order, and matching the regular
solutions with the boundary layer solutions at each end of the shell, one has the asymptotic solutions
satisfying the clamped boundary conditions. They are
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W=c¢ A(l)—A( (cos¢—+ sin ¢ — >exp<191) A<l)<cosgbu
{ ® Ve ¢ Ve Ve ® Ve
0 =X n—X
+—sinq§—> ex <—19—>} +é& {A %) sin mx sin ny + A cos 2n
o NG p NG 11 y 02 y

— (45 cos 2ny)(cos¢\/- p mnqﬁ\[) exp <— 19\%) — (4) cos 2ny) (cos ¢n_\;5x

¥ . m—x mT—X @)
+smq§> exp(—z? ﬂ +&[dl )smmxsmny—i-A cos2ny| + ¢'[4
) NG NG 4 02 ] + &gy

+ 4% sin mx sin ny + AS) sin 2mx + 43} cos 2ny + 4\ sin mx sin 3ny + 4) cos4ny] + O(¢°)  (30)

F=- 002

x ) T—X .2 . T—X
+b10 s1n¢%) p( 197> +Aé}))(bél>cos¢7+b(w)squT)

2
nYy 2) Y 2 X
[ Bgo 2] +82{ B(()O) > +Bll sin mx sin ny +A00 (bfn) cosqﬁﬁ

xexp( ﬂn\/gx> + & Béo)yz + B cos2ny + (4 (:os2ny)(b(gl)cosqu_—&—b10 s1n¢\/_>
9 ) + (4% cos 2ny) ( b b, a
xexp | — 7 + (4, cos2ny) 1cosqi) \/_ i Osm¢7
xexp(—ﬂn\;_x> +é&| - By 2JrBocos2mx+B2cos2ny+B3smmxs1n3ny]JrO( )
€

(31)

Note that, because of Eq. (30), the prebuckling deformation of the shell is nonlinear, and all of the coef-
ficients in Egs. (30) and (31) are related and can be expressed in terms of A(121>, but for the sake of brevity the
detailed expressions are not shown, whereas ¥ and ¢ are given in detail in Appendix A.

Next, upon substitution of Egs. (30) and (31) into the boundary condition (22b) and into closed con-
dition (23) and Eq. (24), the thermal postbuckling equilibrium path can be written as

A= Cully) =i (4i)e) + 27 (47 e)* + -] (32)

In Eq. (32), (A(121>e) is taken as the second perturbation parameter relating to the dimensionless maximum
deflection. If the maximum deflection is assumed to be at the point (x,y) = (n/2m, n/2n), from Eq. (30) one
has

AVe=w, — W2 + - (33a)

where W,, is the dimensionless form of the maximum deflection of the shell that can be written as

1 t w
3 | (D71 D5,A47,45,)

All symbols used in Egs. (32) and (33) are also described in detail in Appendix A. It is noted that ig)
(i=0,2,...) are all functions of temperature and position.
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4. Numerical results and discussion

Numerical results are presented in this section for FGM cylindrical shells with two constituent materials.
Two sets of material mixture are considered. One is silicon nitride and stainless steel and the other is
zirconium oxide and titanium alloy. Two types of FGM cylindrical shell, Type A and Type B, are confi-
gurated. For Type A, the outer surface of the shell is ceramic-rich and the inner surface is metal-rich
(referred to as Si;N,/SUS304 or ZrO,/Ti—6Al-4V). For Type B, the outer surface of the shell is metal-rich
and the inner surface is ceramic-rich (referred to as SUS304/SisNy or Ti-6A1-4V/ZrO;). The material
properties P, such as Young’s modulus £ and thermal expansion coefficient «, can be expressed as a
nonlinear function of temperature (see Touloukian, 1967) as

P=Py(P T +1+PT+PT*+PT?) (34)

in which 7 = Ty + AT and 7, = 300 K (room temperature), Py, P_1, P;, P, and P; are the coefficients of
temperature 7 (K) and are unique to the constituent materials. Typical values for the Young’s modulus £
(in Pa) and the thermal expansion coefficient o (in K) of these materials are listed in Table 1 (from Reddy
and Chin, 1998). Poisson’s ratio v is assumed to be a constant, and v = 0.28.

To obtain numerical results, it is necessary to solve Eq. (32) by an iterative numerical procedure with the
following steps:

(1) Begin with W/t = 0.
(2) Assume elastic constants and the thermal expansion coefficients are constant, i.e. at 7o = 300 K. The
thermal buckling load for the shell of temperature-independent material is obtained.

Table 1
Temperature-dependent coefficients E (in Pa) and « (in K) for ceramics and metals (from Reddy and Chin, 1998)
Materials I P, Py P, P
Zirconia E 244.27e+9 0 —-1.371e-3 1.214e-6 —3.681e-10
o 12.766e—6 0 —-1.491e-3 1.006e—-5 —6.778e—11
Silicon nitride E 348.43¢+9 0 —-3.070e-4 2.160e-7 —8.946e-11
o 5.8723e—6 0 9.095¢—4 0 0
Ti-6A1-4V E 122.56e+9 0 —4.586e—4 0 0
o 7.5788e—6 0 6.638¢—4 —-3.147e-6 0
Stainless steel E 201.04e+9 0 3.079¢—4 —6.534e-7 0
o 12.330e-6 0 8.086e—4 0 0
Table 2

Comparisons of buckling temperatures T, (in K) for perfect FGM cylindrical shells of Type A with temperature-independent or
temperature-dependent properties (R/¢ = 400, Z = 300 and T, = 300 K)

Volume fraction index N SizN,/SUS304 Zr0,/Ti-6A1-4V
T-ID (3,17)* T-D (3,17) T-ID (3,17) T-D (3,17)

0.0 386.6576 382.2661 491.2673 491.2673
0.2 396.0286 390.6354 448.6134 442.2616
0.5 406.5425 399.8903 419.5122 402.9180
1.0 418.4561 410.2505 399.5912 383.4589
2.0 432.4454 4222118 385.6456 371.3242
3.0 440.6835 429.1533 380.3707 366.8971
5.0 450.2794 437.1468 376.1374 363.3554

#The number in brackets indicate the buckling mode (m, n).
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Table 3
Comparisons of buckling temperatures 7, (in K) for perfect FGM cylindrical shells of Type B with temperature-independent or

temperature-dependent properties (R/¢ = 400, Z = 300 and T, = 300 K)
SUS304/Si; N,

Ti-6A1-4V/ZrO,

Volume fraction index N

T-ID (3,17)* T-D (3,17) T-ID (3,17) T-D (3,17)
0.0 477.6268 459.4390 371.4163 359.1458
0.2 450.8366 437.6332 378.5620 365.0509
0.5 432.2022 422.0153 387.4075 372.6016
1.0 418.4561 410.2505 399.5912 383.4589
2.0 407.9799 401.1375 417.9189 401.2534
3.0 399.0110 397.1830 430.7708 415.4941
5.0 395.7186 393.2538 447.0620 437.9041

#The number in brackets indicate the buckling mode (m,n).

800 800
SigN,/SUS304 SUS304/Si,N,,
R/t = 400, Z = 300 Rit = 400, 7 = 300
(m n)=(3, 17) (m n)=(3, 17) .- T-ID
600F  1,=300K,N=02 600F T =300K,N=02 - T-D
% )
= 400 -
i - i i
200(¢ — Wi=00 200(f —— Wit=00
e Wit=0.05 i Wit=005
0 : : : 0 : : :
0.0 05 10 15 20 0.0 05 10 15 20
(@ W (mm) (b) W (mm)
800 800
ZrO,/Ti-6AI-4V Ti-6AI-4V/Z10,
RIt = 400, Z = 300 R/t = 400, Z = 300
(m, n)=(3, 17) - T-ID (m, n)=(3,17)
6001 1 =300K,N=02 - T-D 600F T,=300K,N=02
3 . %3
= o0 =
200(f —— Wi=00 200({ —— Wh=00
' * ' —
e Wih=005 e Wit=0.05
0 L L L 0 L L L
0.0 05 10 15 20 00 05 10 15 20
© W (mm) @ W (mm)

Fig. 1. Effect of material properties on the thermal postbuckling behavior of FGM cylindrical shells. (a) Si3N4/SUS304 shells,
(b) SUS304/Si;N, shells, (c) ZrO,/Ti-6Al-4V shells, (d) Ti-6Al-4V/ZrO, shells.
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(3) Use the temperature determined in the previous step, the temperature-dependent material properties
may be decided from Eq. (34) and the thermal buckling load is obtained again.

(4) Repeat step 3 until the thermal buckling temperature converges.

(5) Specify the new value of W /t, and steps (2)—(4) are repeated until the thermal postbuckling temperature

converges.

The thermal buckling loads T, (in K) for simply supported, perfect FGM cylindrical shells of Types A
and B with different values of volume fraction index N subjected to a uniform temperature rise are cal-
culated and compared in Tables 2 and 3. In computation, the shell radius-to-thickness ratio is R/t = 400,
Z =300 and ¢ = 1 mm. Note that N in Table 2 represents the volume fraction index of metal while in Table
3 it represents the volume fraction index of ceramic. It can be seen that, for the Si;N,/SUS304 and SUS304/
Si;Ny cylindrical shells, a fully metallic shell (V = 0 in Table 2) has the lowest buckling temperature and a
fully ceramic shell (¥ = 0 in Table 3) has the largest buckling temperature. Also, the buckling temperature

800 800
Si3N4ISUS_304 1:N=02 SUS304JSi_3N4 1:N=02
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Fig. 2. Effect of volume fraction index N on the thermal postbuckling behavior of FGM cylindrical shells. (a) Si3sN,/SUS304 shells,
(b) SUS304/Si;Ny shells, (c) ZrO,/Ti-6A1-4V shells, (d) Ti-6Al-4V/ZrO, shells.
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increases as the volume fraction index N of stainless steel increases. This is expected because the metallic
shell has a larger value of thermal expansion coefficient « than the ceramic shell does. In contrast, for the
Zr0O,/Ti-6A1-4V and Ti-6Al-4V/ZrO, cylindrical shells, the buckling temperature is decreased as the
volume fraction index N of titanium alloy increases. It can also be seen that the buckling temperature of an
FGM cylindrical shell with temperature-dependent material properties (referred to as T-D) is lower than
that of the FGM cylindrical shell with temperature-independent material properties (referred to as T-ID).
In Tables 2 and 3, (m,n) represent the buckling mode, which determine the number of half-waves in the X-
direction and of full waves in the Y-direction.

Fig. 1 shows the thermal postbuckling load—deflection curves for perfect and imperfect, FGM cylindrical
shells of Types A and B with a volume fraction index N = 0.2 under two cases of thermoelastic material
properties, i.e. T-ID and T-D. It can be seen that the thermal postbuckling equilibrium path becomes lower
when the temperature-dependent properties are taken into account.

Fig. 2 shows the thermal postbuckling load—deflection curves for the same four FGM cylindrical shells
with different values of the volume fraction index N (=0.2, 1.0 and 5.0) when subjected to a uniform
temperature rise under T-D case. It can be seen that the Si;N,/SUS304 shell has lower buckling temperature
and postbuckling path when it has lower volume fraction index N of stainless steel. In contrast, for the
Zr0,/Ti—6A1-4V cylindrical shell, both buckling temperature and thermal postbuckling loads decrease as
the volume fraction index N of titanium alloy increases. Note that FGM cylindrical shells of Types A and
B, e.g. Si3N,/SUS304 and SUS304/Si;N,, will have the same thermal postbuckling load—deflection curves
when the volume fraction index N = 1.0.

It is noted that in all these figures W /¢t denotes the dimensionless maximum initial geometric
imperfection of the shell. From Figs. 1 and 2, it can be seen that the thermal postbuckling equilib-
rium path is stable and the shell structure is virtually imperfection-insensitive for both T-ID and T-D
cases.

5. Concluding remarks

In order to assess the effects of temperature-dependent material properties and volume fraction index on
the thermal postbuckling behavior of FGM cylindrical shells, a fully nonlinear postbuckling analysis is
presented based on classical shell theory with a von Karman—Donnell-type of kinematic nonlinearity.
Material properties are assumed to be nonlinear functions of temperature, and graded in the thickness
direction according to a simple power law distribution in terms of the volume fractions of the constituents.
The boundary layer theory of shell buckling has been extended to the case of FGM cylindrical shells
subjected to a uniform temperature rise. A singular perturbation technique is employed to determine
buckling temperature and postbuckling load—deflection curves. Numerical results are for two types of FGM
cylindrical shell with two constituent materials. In effect, the results provide information about thermal
postbuckling behavior of FGM shells for different proportions of the ceramic and metal. The results reveal
that the shell has lower buckling temperature and postbuckling load—deflection curves when the temper-
ature-dependent properties are taken into account. They also confirm that the thermal postbuckling
equilibrium path is stable and the shell structure is virtually imperfection-insensitive.
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Appendix A

In Eq. (18)
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in the above equations
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