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Abstract

Thermal postbuckling analysis is presented for a functionally graded cylindrical thin shell of finite length. The

temperature field considered is assumed to be a uniform distribution over the shell surface and through the shell

thickness. Material properties are assumed to be temperature-dependent, and graded in the thickness direction

according to a simple power law distribution in terms of the volume fractions of the constituents. The governing

equations are based on the classical shell theory with a von K�arm�an–Donnell-type of kinematic nonlinearity. The

nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A

boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large

deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of

functionally graded cylindrical shells of finite length. A singular perturbation technique is employed to determine

buckling temperature and postbuckling load–deflection curves. The numerical illustrations concern the thermal post-

buckling response of perfect and imperfect, cylindrical thin shells with two constituent materials. The effects played by

volume fraction distribution, and initial geometric imperfections are studied.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Designs of airframes for high speed flight and spacecraft structures have to consider carefully the effect

of the thermal environment on structural and material behavior. For this reason, many thermal post-

buckling studies of composite laminated shell structures are available in the literature, see for example,
Birman and Bert (1993), and Shen (1997, 2002a). In these studies the material properties are considered to

be independent of temperature. Functionally graded materials (FGMs) are microscopically inhomogeneous

composites usually made from a mixture of metals and ceramics. By gradually varying the volume fraction

of the constituent materials, their material properties exhibit a smooth and continuous change from one
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surface to another, thus eliminating interface problems and mitigating thermal stress concentrations.

FGMs are now developed for general use as structural components in extremely high temperature envi-

ronments, and they have the advantage of being able to withstand high temperature environments while

maintaining their structural integrity. Loy et al. (1999) presented a free vibration analysis of simply sup-
ported FGM cylindrical thin shells. This work was then extended to the case of FGM cylindrical thin shells

under various boundary conditions by Pradhan et al. (2000). Gong et al. (1999) gave an elastic response

analysis of simply supported FGM cylindrical shells under low-velocity impact. By using the finite element

method and Fourier transformation technique, Han et al. (2001) solved the wave motion in an FGM

cylinder. Ng et al. (2001) studied the parametric resonance or dynamic stability of FGM cylindrical thin

shells under periodic axial loading. In the forgoing studies, Reddy and his co-workers developed a simple

theory, in which the material properties are graded in the thickness direction according to a volume fraction

power law distribution, but their numerical results were only for a simple case of an FGM shell in a
constant thermal environment. Recently, Shen (2002b, 2003) gave a postbuckling analysis of FGM

cylindrical thin shells subjected to axial compression or external pressure. In the above studies, the material

properties were considered to be temperature-dependent and the effect of temperature rise on the post-

buckling behavior was reported. Also recently, Shahsiah and Eslami (2003) studied the thermal buckling of

FGM cylindrical shells under two types of thermal loads based on the first order shear deformation shell

theory. In their analysis the material properties were considered to be independent of temperature. How-

ever, studies on thermal postbuckling of FGM cylindrical shells with temperature-dependent thermoelastic

properties have not been seen in the literature. This problem is studied in the present paper, for the case
when two end edges of the shell are assumed to be simply supported or clamped with no in-plane dis-

placement.

Under the present study, the material properties are assumed to be nonlinear functions of temperature,

and graded in the thickness direction according to a volume fraction power law distribution. It is because

the thermal buckling only occurs for thin cylindrical shells. The governing equations are based on the

classical shell theory with a von K�arm�an–Donnell-type of kinematic nonlinearity. The boundary layer

theory suggested by Shen and Chen (1988, 1990) is extended to the case of FGM cylindrical shells with two

constituent materials subjected to a uniform temperature rise. A singular perturbation technique is em-
ployed to determine the buckling temperature and thermal postbuckling load–deflection curves. The

nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into

account but, for simplicity, the form of initial geometric imperfection is assumed to be the same as the

initial buckling mode of the shell.
2. Theoretical development

Consider an FGM circular cylindrical shell with mean radius R, length L and thickness t, which is made

from a mixture of ceramic and metallic materials. The shell is referred to a coordinate system ðX ; Y ; ZÞ in
which X and Y are in the axial and circumferential directions of the shell and Z is in the direction of the
inward normal to the middle surface. The corresponding displacements are designated by U , V and W . The

origin of the coordinate system is located at the end of the shell in the middle plane. The shell is assumed to

be relatively thin and geometrically imperfect, and is subjected to a uniform temperature rise DT . Denoting

the initial geometric imperfection by W
�ðX ; Y Þ, let W ðX ; Y Þ be the additional deflection and F ðX ; Y Þ be the

stress function for the stress resultants defined by Nx ¼ F ;yy , Ny ¼ F ;xx and Nxy ¼ �F ;xy , where a comma

denotes partial differentiation with respect to the corresponding coordinates.

Assume that the material composition varies smoothly from the outer to the inner surface of the shell. In

such a way, the effective material properties P , like Young�s modulus E or thermal expansion coefficient a,
can be expressed as



H.-S. Shen / International Journal of Solids and Structures 41 (2004) 1961–1974 1963
P ¼ PoVo þ PiVi ð1Þ
where Po and Pi denote the temperature-dependent properties of the outer and inner surfaces of the shell,

respectively, and Vo and Vi are the volume fractions of the constituent materials corresponding to Po and Pi
and are related by
Vo þ Vi ¼ 1 ð2Þ
The volume fraction Vi follows a simple power law
Vi ¼
2Z þ t
2t

� �N

ð3Þ
where volume fraction index N dictates the material variation profile through the shell thickness and may

be varied to obtain the optimum distribution of component materials. It is evident that when N ¼ 0, Vi ¼ 1

and Vo ¼ 0, the shell is an isotropic one made up of material as that at the inner surface.

From Eqs. (1)–(3), the effective Young�s modulus E and thermal expansion coefficient a of an FGM

cylindrical shell can be written as (see Gibson et al., 1995)
EðZ; T Þ ¼ ½EiðT Þ � EoðT Þ�
2Z þ t
2t

� �N

þ EoðT Þ

aðZ; T Þ ¼ ½aiðT Þ � aoðT Þ�
2Z þ t
2t

� �N

þ aoðT Þ
ð4Þ
It is evident that when Z ¼ �t=2, E ¼ Eo and a ¼ ao, and when Z ¼ t=2, E ¼ Ei and a ¼ ai. Since func-

tionally graded structures are most commonly used in high temperature environment where significant

changes in mechanical properties of the constituent materials are to be expected (see Reddy and Chin,

1998), it is essential to take into consideration this temperature-dependency for accurate prediction of the

mechanical response. Thus, Eo, Ei, ao and ai are functions of temperature, as to be shown in Section 4, so

that E and a are both temperature and position dependent.
Based on classical shell theory (i.e. transverse shear deformation effects are neglected) with von K�arm�an–

Donnell-type kinematic relations and including thermal effects, the governing differential equations for an

FGM cylindrical shell have been derived and can be expressed in terms of a stress function F , the transverse
displacement W , and the initial geometric imperfection W

�
. They are
~L11 W
� �

þ ~L12ðF Þ � ~L13ðN
T Þ � ~L14ðM

T Þ � 1

R
F ;xx ¼ ~LðW þ W

�
; F Þ ð5Þ
~L21ðF Þ � ~L22ðW Þ � ~L23ðN
T Þ þ 1

R
W ;xx ¼ � 1

2
LðW þ 2W

�
;W Þ ð6Þ
where the linear operators ~Lijð Þ and the nonlinear operator ~Lð Þ are defined as
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ð7Þ
It is noted that these shell equations include thermal coupling as well as the interaction of stretching and

bending. Eqs. (5)–(7) are identical in form to those of unsymmetric cross-ply laminated cylindrical shells

under thermomechanical loading (see Shen, 1997), but now all the reduced stiffness matrices ½A�
ij�, ½B�

ij� and
½D�

ij� (i; j ¼ 1; 2; 6) are functions of temperature and position, defined by
A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B ð8Þ

where Aij, Bij and Dij are defined by
ðAij;Bij;DijÞ ¼
Z t=2

�t=2
ðQijÞð1; Z; Z2ÞdZ ði; j ¼ 1; 2; 6Þ ð9Þ
and
Q11 ¼ Q22 ¼
EðZ; T Þ
1� m2

; Q12 ¼
mEðZ; T Þ
1� m2

; Q16 ¼ Q26 ¼ 0; Q66 ¼
EðZ; T Þ
2ð1þ mÞ ð10Þ
in which E is given in detail in Eq. (4), and varies through the shell thickness.

The forces and moments caused by elevated temperature are defined by
N
T
x M

T
x

N
T
y M

T
y

N
T
xy M

T
xy

2
64

3
75 ¼

Z t=2

�t=2

AxðZ; T Þ
AyðZ; T Þ
AxyðZ; T Þ

2
4

3
5DT ð1; ZÞdZ ð11Þ
where DT is temperature rise from some reference temperature at which there are no thermal strains, and
AxðZ; T Þ
AyðZ; T Þ
AxyðZ; T Þ

2
4

3
5 ¼ �

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
4

3
5 1 0

0 1

0 0

2
4

3
5 aðZ; T Þ

aðZ; T Þ

� �
ð12Þ
where the thermal expansion coefficient a is also given in detail in Eq. (4).

The two end edges of the shell are assumed to be simply supported or clamped, and to be restrained

against expansion longitudinally while temperature is increased steadily, so that the boundary conditions

are

X ¼ 0, L:
W ¼ 0 ð13aÞ

U ¼ 0 ð13bÞ
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Mx ¼ �B�
21

o2F
oX 2

� B�
11

o2F
oY 2

� D�
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o2W
oX 2

� D�
12

o2W
oY 2

þM
T
x ¼ 0 ðsimply supportedÞ ð13cÞ

W ¼ W ;x ¼ 0 ðclampedÞ ð13dÞ
where Mx is the bending moment. Also, we have the closed (or periodicity) condition
Z 2pR

0

oV
oY

dY ¼ 0 ð14aÞ
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Z 2pR

0
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22
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22N
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#
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Because of Eq. (14), the in-plane boundary condition V ¼ 0 (at X ¼ 0, L) is not needed in Eq. (13).

The average end-shortening relationship is defined as
Dx
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¼ � 1
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3. Analytical method and asymptotic solutions

Having developed the theory, we are now in a position to solve Eqs. (5) and (6) with boundary condition
(13). Before proceeding, it is convenient first to define the following dimensionless quantities
x ¼ pX=L; y ¼ Y =R; b ¼ L=pR; Z ¼ L2=Rt; e ¼ ðp2R=L2Þ½D�
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ð16Þ
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where a0 is an arbitrary reference value, and
a11 ¼ a11a0; a22 ¼ a22a0 ð17Þ
in Eq. (16) AT
x ¼ AT

y are defined by
AT
x

AT
y

� �
¼ �

Z t=2

�t=2

Ax

Ay

� �
dZ ð18Þ
and the details of which can be found in Appendix A.
The nonlinear Eqs. (5) and (6) may then be written in dimensionless form as
e2L11ðW Þ þ ec14L12ðF Þ � c14F;xx ¼ c14b
2LðW þ W �; F Þ ð19Þ

L21ðF Þ � ec24L22ðW Þ þ c24W;xx ¼ �1
2
c24b

2LðW þ 2W �;W Þ ð20Þ
where
L11ð Þ ¼ o4

ox4
þ 2c12b

2 o4

ox2oy2
þ c214b

4 o4

oy4
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ox2oy2
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4 o4

oy4

L21ð Þ ¼ o4

ox4
þ 2c22b

2 o4

ox2oy2
þ c224b

4 o4

oy4
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ð21Þ
For most of the FGMs ½D�
11D

�
22A

�
11A

�
22�

1=4 ffi 0:3t. Moreover, when Z ¼ ðL2=RtÞ > 2:96, then from Eq. (16)

e < 1. In particular, for homogeneous isotropic cylindrical shells, e ¼ p2=ZB

ffiffiffiffiffi
12

p
, where ZB ¼ ðL2=RtÞ�

½1� m2�1=2 is the Batdorf shell parameter, which should be greater than 2.85 in the case of classical linear

buckling analysis (Batdorf, 1947). In practice, the shell structure will have ZP 10, so that we always have

e � 1. When e < 1, Eqs. (19) and (20) are of the boundary layer type, then nonlinear prebuckling defor-
mations, large deflections in the postbuckling range, and initial geometric imperfections of the shell can be

considered simultaneously.

The boundary conditions of Eq. (13) become

x ¼ 0, p;
W ¼ 0 ð22aÞ

dx ¼ 0 ð22bÞ

Mx ¼ 0 ðsimply supportedÞ ð22cÞ

W ;x ¼ 0 ðclampedÞ ð22dÞ

and the closed condition of Eq. (14b) becomes
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The unit end-shortening relationship becomes
dx ¼ � 1

4p2c24
e�1

Z 2p
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Z p
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2 o
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dxdy ð24Þ
By virtue of the fact that DT is assumed to be uniform, the thermal coupling in Eqs. (5) and (6) vanishes,

but the terms in DT affect Eqs. (23) and (24).

From Eqs. (19)–(24), one can determine the thermal postbuckling behavior of perfect and imperfect
FGM cylindrical shells subjected to a uniform temperature rise by means of a singular perturbation

technique. The essence of this procedure, in the present case, is to assume that
W ¼ wðx; y; eÞ þ ~W ðx; n; y; eÞ þ Ŵ ðx; f; y; eÞ
F ¼ f ðx; y; eÞ þ ~F ðx; n; y; eÞ þ F̂ ðx; f; y; eÞ

ð25Þ
where e is a small perturbation parameter (provided Z > 2:96) as defined in Eq. (16) and wðx; y; eÞ, f ðx; y; eÞ
are called outer or regular solutions of the shell, ~W ðx; n; y; eÞ, ~F ðx; n; y; eÞ and Ŵ ðx; f; y; eÞ, F̂ ðx; f; y; eÞ are the
boundary layer solutions near the x ¼ 0 and x ¼ p edges, respectively, and n and f are the boundary layer

variables, defined as
n ¼ x=
ffiffiffiffi
e;

p
f ¼ ðp� xÞ=

ffiffi
e

p
ð26Þ
This means for homogeneous isotropic cylindrical shells the width of the boundary layers is of order
ffiffiffiffiffi
Rt

p
.

In Eq. (25) the regular and boundary layer solutions are taken in the forms of perturbation expansions as
wðx; y; eÞ ¼
X
j¼1

ejwjðx; yÞ; f ðx; y; eÞ ¼
X
j¼0

ejfjðx; yÞ ð27aÞ
~W ðx; n; y; eÞ ¼
X
j¼0

ejþ1 ~Wjþ1ðx; n; yÞ; ~F ðx; n; y; eÞ ¼
X
j¼0

ejþ2~Fjþ2ðx; n; yÞ ð27bÞ
Ŵ ðx; f; y; eÞ ¼
X
j¼0

ejþ1Ŵjþ1ðx; f; yÞ; F̂ ðx; f; y; eÞ ¼
X
j¼0

ejþ2F̂jþ2ðx; f; yÞ ð27cÞ
The initial buckling mode is assumed to have the form
w2ðx; yÞ ¼ Að2Þ
11 sinmx sin ny ð28Þ
and the initial geometric imperfection is assumed to have the similar form
W �ðx; y; eÞ ¼ e2a�11 sinmx sin ny ¼ e2 / Að2Þ
11 sinmx sin ny ð29Þ
where /¼ a�11=A
ð2Þ
11 is the imperfection parameter.

Substituting Eqs. (25)–(27) into Eqs. (19) and (20) and collecting terms of the same order of e, one
obtains three sets of perturbation equations for the regular and boundary layer solutions respectively.

Using Eqs. (28) and (29) to solve these perturbation equations of each order, and matching the regular
solutions with the boundary layer solutions at each end of the shell, one has the asymptotic solutions

satisfying the clamped boundary conditions. They are
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W ¼ e Að1Þ
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Note that, because of Eq. (30), the prebuckling deformation of the shell is nonlinear, and all of the coef-

ficients in Eqs. (30) and (31) are related and can be expressed in terms of Að2Þ
11 , but for the sake of brevity the

detailed expressions are not shown, whereas # and / are given in detail in Appendix A.

Next, upon substitution of Eqs. (30) and (31) into the boundary condition (22b) and into closed con-
dition (23) and Eq. (24), the thermal postbuckling equilibrium path can be written as
kT ¼ C11½kð0ÞT � kð2ÞT ðAð2Þ
11 eÞ

2 þ kð4ÞT ðAð2Þ
11 eÞ

4 þ � � �� ð32Þ
In Eq. (32), (Að2Þ
11 e) is taken as the second perturbation parameter relating to the dimensionless maximum

deflection. If the maximum deflection is assumed to be at the point ðx; yÞ ¼ ðp=2m; p=2nÞ, from Eq. (30) one

has
Að2Þ
11 e ¼ Wm �H3W 2

m þ � � � ð33aÞ
where Wm is the dimensionless form of the maximum deflection of the shell that can be written as
Wm ¼ 1

C3

t

½D�
11D

�
22A

�
11A

�
22�

1=4

W
t

"
þH4

#
ð33bÞ
All symbols used in Eqs. (32) and (33) are also described in detail in Appendix A. It is noted that kðiÞT
(i ¼ 0; 2; . . .) are all functions of temperature and position.
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4. Numerical results and discussion

Numerical results are presented in this section for FGM cylindrical shells with two constituent materials.

Two sets of material mixture are considered. One is silicon nitride and stainless steel and the other is
zirconium oxide and titanium alloy. Two types of FGM cylindrical shell, Type A and Type B, are confi-

gurated. For Type A, the outer surface of the shell is ceramic-rich and the inner surface is metal-rich

(referred to as Si3N4/SUS304 or ZrO2/Ti–6Al–4V). For Type B, the outer surface of the shell is metal-rich

and the inner surface is ceramic-rich (referred to as SUS304/Si3N4 or Ti–6Al–4V/ZrO2). The material

properties P , such as Young�s modulus E and thermal expansion coefficient a, can be expressed as a

nonlinear function of temperature (see Touloukian, 1967) as
Table

Tempe

Mat

Zirc

Silic

Ti–6

Stai

Table

Compa

temper

Volu

0.0

0.2

0.5

1.0

2.0

3.0

5.0

a Th
P ¼ P0ðP�1T�1 þ 1þ P1T þ P2T 2 þ P3T 3Þ ð34Þ

in which T ¼ T0 þ DT and T0 ¼ 300 K (room temperature), P0, P�1, P1, P2 and P3 are the coefficients of

temperature T (K) and are unique to the constituent materials. Typical values for the Young�s modulus E
(in Pa) and the thermal expansion coefficient a (in K) of these materials are listed in Table 1 (from Reddy
and Chin, 1998). Poisson�s ratio m is assumed to be a constant, and m ¼ 0:28.

To obtain numerical results, it is necessary to solve Eq. (32) by an iterative numerical procedure with the

following steps:

(1) Begin with W =t ¼ 0.

(2) Assume elastic constants and the thermal expansion coefficients are constant, i.e. at T0 ¼ 300 K. The

thermal buckling load for the shell of temperature-independent material is obtained.
1

rature-dependent coefficients E (in Pa) and a (in K) for ceramics and metals (from Reddy and Chin, 1998)

erials P0 P�1 P1 P2 P3

onia E 244.27e+9 0 )1.371e)3 1.214e)6 )3.681e)10
a 12.766e)6 0 )1.491e)3 1.006e)5 )6.778e)11

on nitride E 348.43e+9 0 )3.070e)4 2.160e)7 )8.946e)11
a 5.8723e)6 0 9.095e)4 0 0

Al–4V E 122.56e+9 0 )4.586e)4 0 0

a 7.5788e)6 0 6.638e)4 )3.147e)6 0

nless steel E 201.04e+9 0 3.079e)4 )6.534e)7 0

a 12.330e)6 0 8.086e)4 0 0

2

risons of buckling temperatures Tcr (in K) for perfect FGM cylindrical shells of Type A with temperature-independent or

ature-dependent properties (R=t ¼ 400, Z ¼ 300 and T0 ¼ 300 K)

me fraction index N Si3N4/SUS304 ZrO2/Ti–6Al–4V

T-ID (3,17)a T-D (3,17) T-ID (3,17) T-D (3,17)

386.6576 382.2661 491.2673 491.2673

396.0286 390.6354 448.6134 442.2616

406.5425 399.8903 419.5122 402.9180

418.4561 410.2505 399.5912 383.4589

432.4454 422.2118 385.6456 371.3242

440.6835 429.1533 380.3707 366.8971

450.2794 437.1468 376.1374 363.3554

e number in brackets indicate the buckling mode ðm; nÞ.



Table 3

Comparisons of buckling temperatures Tcr (in K) for perfect FGM cylindrical shells of Type B with temperature-independent or

temperature-dependent properties (R=t ¼ 400, Z ¼ 300 and T0 ¼ 300 K)

Volume fraction index N SUS304/Si3N4 Ti–6Al–4V/ZrO2

T-ID (3,17)a T-D (3,17) T-ID (3,17) T-D (3,17)

0.0 477.6268 459.4390 371.4163 359.1458

0.2 450.8366 437.6332 378.5620 365.0509

0.5 432.2022 422.0153 387.4075 372.6016

1.0 418.4561 410.2505 399.5912 383.4589

2.0 407.9799 401.1375 417.9189 401.2534

3.0 399.0110 397.1830 430.7708 415.4941

5.0 395.7186 393.2538 447.0620 437.9041

a The number in brackets indicate the buckling mode ðm; nÞ.
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Fig. 1. Effect of material properties on the thermal postbuckling behavior of FGM cylindrical shells. (a) Si3N4/SUS304 shells,

(b) SUS304/Si3N4 shells, (c) ZrO2/Ti–6Al–4V shells, (d) Ti–6Al–4V/ZrO2 shells.
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(3) Use the temperature determined in the previous step, the temperature-dependent material properties

may be decided from Eq. (34) and the thermal buckling load is obtained again.

(4) Repeat step 3 until the thermal buckling temperature converges.

(5) Specify the new value of W =t, and steps (2)–(4) are repeated until the thermal postbuckling temperature
converges.

The thermal buckling loads Tcr (in K) for simply supported, perfect FGM cylindrical shells of Types A

and B with different values of volume fraction index N subjected to a uniform temperature rise are cal-

culated and compared in Tables 2 and 3. In computation, the shell radius-to-thickness ratio is R=t ¼ 400,

Z ¼ 300 and t ¼ 1 mm. Note that N in Table 2 represents the volume fraction index of metal while in Table

3 it represents the volume fraction index of ceramic. It can be seen that, for the Si3N4/SUS304 and SUS304/

Si3N4 cylindrical shells, a fully metallic shell (N ¼ 0 in Table 2) has the lowest buckling temperature and a
fully ceramic shell (N ¼ 0 in Table 3) has the largest buckling temperature. Also, the buckling temperature
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Fig. 2. Effect of volume fraction index N on the thermal postbuckling behavior of FGM cylindrical shells. (a) Si3N4/SUS304 shells,

(b) SUS304/Si3N4 shells, (c) ZrO2/Ti–6Al–4V shells, (d) Ti–6Al–4V/ZrO2 shells.
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increases as the volume fraction index N of stainless steel increases. This is expected because the metallic

shell has a larger value of thermal expansion coefficient a than the ceramic shell does. In contrast, for the

ZrO2/Ti–6Al–4V and Ti–6Al–4V/ZrO2 cylindrical shells, the buckling temperature is decreased as the

volume fraction index N of titanium alloy increases. It can also be seen that the buckling temperature of an
FGM cylindrical shell with temperature-dependent material properties (referred to as T-D) is lower than

that of the FGM cylindrical shell with temperature-independent material properties (referred to as T-ID).

In Tables 2 and 3, ðm; nÞ represent the buckling mode, which determine the number of half-waves in the X -
direction and of full waves in the Y -direction.

Fig. 1 shows the thermal postbuckling load–deflection curves for perfect and imperfect, FGM cylindrical

shells of Types A and B with a volume fraction index N ¼ 0:2 under two cases of thermoelastic material

properties, i.e. T-ID and T-D. It can be seen that the thermal postbuckling equilibrium path becomes lower

when the temperature-dependent properties are taken into account.
Fig. 2 shows the thermal postbuckling load–deflection curves for the same four FGM cylindrical shells

with different values of the volume fraction index N (¼ 0.2, 1.0 and 5.0) when subjected to a uniform

temperature rise under T-D case. It can be seen that the Si3N4/SUS304 shell has lower buckling temperature

and postbuckling path when it has lower volume fraction index N of stainless steel. In contrast, for the

ZrO2/Ti–6Al–4V cylindrical shell, both buckling temperature and thermal postbuckling loads decrease as

the volume fraction index N of titanium alloy increases. Note that FGM cylindrical shells of Types A and

B, e.g. Si3N4/SUS304 and SUS304/Si3N4, will have the same thermal postbuckling load–deflection curves

when the volume fraction index N ¼ 1:0.
It is noted that in all these figures W

�
=t denotes the dimensionless maximum initial geometric

imperfection of the shell. From Figs. 1 and 2, it can be seen that the thermal postbuckling equilib-

rium path is stable and the shell structure is virtually imperfection-insensitive for both T-ID and T-D

cases.
5. Concluding remarks

In order to assess the effects of temperature-dependent material properties and volume fraction index on
the thermal postbuckling behavior of FGM cylindrical shells, a fully nonlinear postbuckling analysis is

presented based on classical shell theory with a von K�arm�an–Donnell-type of kinematic nonlinearity.

Material properties are assumed to be nonlinear functions of temperature, and graded in the thickness

direction according to a simple power law distribution in terms of the volume fractions of the constituents.

The boundary layer theory of shell buckling has been extended to the case of FGM cylindrical shells

subjected to a uniform temperature rise. A singular perturbation technique is employed to determine

buckling temperature and postbuckling load–deflection curves. Numerical results are for two types of FGM

cylindrical shell with two constituent materials. In effect, the results provide information about thermal
postbuckling behavior of FGM shells for different proportions of the ceramic and metal. The results reveal

that the shell has lower buckling temperature and postbuckling load–deflection curves when the temper-

ature-dependent properties are taken into account. They also confirm that the thermal postbuckling

equilibrium path is stable and the shell structure is virtually imperfection-insensitive.
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Appendix A

In Eq. (18)
k

k

k

AT
x ¼ t

1� m
ðai



� aoÞðEi � EoÞ

1

2N þ 1
þ aoðEi½ � EoÞ þ ðai � aoÞEo�

1

N þ 1
þ aoEo

�
ðA:1Þ
and in Eqs. (32) and (33)
H3 ¼
1

C3

c224
c14c24 þ c234

� �
m4ð1þ /Þ
16n2b2g2

e�1




þ 1
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c224
c14c24 þ c234
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m2

c24n2b
2
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c24

ð1
�

þ 2 / Þ � 2c24
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þ c224 � c25
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kð2ÞT
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ð0Þ
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in the above equations
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g1 ¼ m4 þ 2c12m
2n2b2 þ c214n

4b4; g2 ¼ m4 þ 2c22m
2n2b2 þ c224n

4b4;

g3 ¼ c30m
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